127. Glycosylidene Carbenes

Part 18

Insertion of Glycosylidene Carbenes into the Sn-H Bond of Tributyland Triphenylstannane: A Synthesis of Stannoglycosides

by Peter Uhlmann, Daniel Nanz, Eva Bozó, and Andrea Vasella*

Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

(18. V.94)

Insertion of the glycosylidene carbenes, derived from the gluco- and the manno-diazirines 1 and 2, into the Sn-H bond of R₃SnH (R = Bu or Ph) leads to the fully substituted stannoglycosides 3-8 (53-77%). The 1,2-cis-configurated products are formed preferentially (α -D/ β -D ranges from 2.5:1 to 5.1:1 with 1, and 1:1.3 to 1:4.2 with 2). Relative to CH₂Cl₂, THF favors formation of the equatorial Sn-glycosides. The stannylated (benzyloxy)glucals 9 and 10 were isolated as side products. The reaction of 1 with (Bu₃Sn)₂ yielded 9 (17% in CH₂Cl₂; 36% in CCl₄) together with the azines 11 and the benzyloxyglucal 12. NMR Data of the Sn-glycosides 3-8 show evidence for an anomeric effect, ${}^{1}J(C(1),H)$ being larger in the axial and ${}^{1}J(Sn,C(1))$ larger in the equatorial anomers.

Introduction. – The formal insertion of glycosylidene carbenes into the OH group of phenols and alcohols proceeds essentially by protonation of the carbene, followed by combination of the ensuing ions to form glycosides [1–5]. The formal insertion of glycosylidene carbenes into the P—H bond of diphenylphosphine appears to proceed by nucleophilic attack of the phosphine to the carbene, followed by proton migration to form a glycosylphosphine [6]. The third possibility for the non-synchronous formal insertion into a X—H bond, viz. a nucleophilic attack of the carbene, followed by hydride migration, may conceivably be realized in the reaction of glycosylidene carbenes with stannanes¹). We wondered if such a reaction leads (stereoselectively?) to glycosyl stannanes. Fully substituted Sn-glycosides²) are of interest as potential precursors of C-glycosides; we thus planned to find rapid access to these new glycosyl derivatives via carbenes while developing an alternative, ultimately more convenient method for their synthesis [17], a strategy which has proven successful for the synthesis of glycosyl phosphines [6] [18].

Insertion of carbenes into the Sn-H bond is well known. Connor et al. have investigated the insertion of [methoxy(phenyl)carbene]chromium complexes into the M-H bond of silanes, germanes, and stannanes (M = Si, M = Ge, M = Sn) [19-21]; the inser-

¹⁾ Stannanes are much less acidic than alcohols (Bu₃SnH: pK = 25.0; Ph₃SnH: p $K \approx 16$ [7]). An alternative mechanism, viz. a hydride transfer from Bu₃SnH to a (methoxycarbene)chromium complex leading diastereoselectively to an Sn,O-acetal has been reported by Nakamura et al. [8].

The known Sn-glycosides lack O- or N-substituents at C(2), see e.g. [9-16].

tion rate increased markedly from M = Si to M = Sn [21]. The reaction of chlorophenyl-diazirine, a source of chlorophenylcarbene, with Bu_3SnH gave $Bu_3SnCHClPh$ in excellent yields [22] [23]. Similar kinetic constants have been reported for the reaction of chloro-(phenyl)carbene with Bu_3SnH and tetramethylethylene [24].

We report on the reaction of the *gluco* - and *manno* -configurated diazirines 1 [25] and 2 [26] with Bu₃SnH, Ph₃SnH, and (Bu₃Sn)₂, and on the analysis of the NMR parameters of the insertion products.

Results and Discussion. – 1. Reaction of the Diazirines 1 and 2 with R_3SnH . The reaction of the diazirine 1 with 5 equiv. of Bu₃SnH in CH₂Cl₂ at room temperature gave a high yield of the anomeric Sn-glycosides 3 and 4 (α -D/ β -D 5.1:1) and the stannylated (benzyloxy)glucal 9 (Scheme 1 and Table 1). The isolated yields of the main products 3 (58%) and 4 (10%) do not correspond exactly to the ratio of the anomers 3 and 4 in the crude, probably due to some decomposition, mainly of 4, during chromatography. The

Table 1. Reaction of the Diazirines 1 and 2 with R₃SnH and (Bu₃Sn)₂

Diazirine	Substrate	Solvent	Products	Ratio		
			α-D	β-D	(Benzyloxy)glucals	α -D/ β -D ^b)
1	Bu ₃ SnH	CH ₂ Cl ₂	3 (58)	4 (10)	9 (8)	5.1:1
1	Bu ₃ SnH	THF	3 (54)	4 (16)	9 (3)	3.8:1
1	Ph ₃ SnH	CH ₂ Cl ₂	5 (63)	6 (14)		3.5:1
1	Ph ₃ SnH	THF	5 (53)	6 (22)	_	2.5:1
2	Bu ₃ SnH	CH ₂ Cl ₂	7 (25)	8 (28)	10 (7)	1:1.3
2	Bu ₃ SnH	THF	7(13)	8 (43)	= '	1:4.2
1	(Bu ₃ Sn) ₂	CH ₂ Cl ₂	_ ` ´		9 (17)	_
1	(Bu ₃ Sn) ₂	CCl₄	_	_	9 (36)	_

a) After chromatography. b) Determined from the H-NMR spectrum of the crude product.

analogous reaction in THF gave a similar yield of the Sn-glycosides (70%), but the ratio of the anomers was lowered to α -D/ β -D 3.8:1.

The Sn-glycosides 5 and 6 were obtained by treating 1 with Ph_3SnH (77% in CH_2Cl_2 and 75% in THF). The diastereoselectivity was lower than that observed in the reaction of 1 with Bu_3SnH (5/6 3.5:1 in CH_2Cl_2 , ca. 2.5:1 in THF), but showed a similar solvent dependence. No stannylated (benzyloxy)glucal could be isolated. The constitution and configuration of the Sn-glycosides 3–6 were established by NMR spectroscopy (see *Table 5* and *Exper. Part*).

Thus, the *gluco*-diazirine 1 leads preferentially to the 1,2-cis-configurated α -D-Sn-glycosides. To check if the diastereoselectivity is due to a preferred formation of an α -D-or of a 1,2-cis-configurated Sn-glycoside, we treated the manno-diazirine 2 with Bu₃SnH in CH₂Cl₂ and THF (Scheme 1 and Table 1). The Sn-mannosides 7 and 8 were formed in yields of 50–55% together with the stannylated (benzyloxy)glucal 10. The ratio of anomers again depended upon the solvent: the slight preference for the β -D-anomer realized in CH₂Cl₂ (α -D/ β -D 1:1.3) was improved significantly when the solvent was THF (α -D/ β -D 1:4.2), clearly showing the preference for the formation of 1,2-cis-configurated Sn-glycosides.

These results are compatible with the above proposed mechanism³). Apparently, the migrating hydride avoids an electrostatic interaction with the C(2)-alkoxy substituent. Conceivably, this effect is accompanied by a favorable intramolecular interaction of the Sn center with this alkoxy group, similarly to the interaction which has been postulated for such alkoxy groups with a tetraligated phosphonium center [29]. An analogous intermolecular interaction with THF, increasing the bulk of the C(1)-substituent during hydride migration, and favoring the equatorial ($=\beta$ -D) anomers may explain the solvent dependence of the diastereoselectivity.

2. Reaction of 1 with $(Bu_3Sn)_2$. The diazirine 1 was treated with 5 equiv. of $(Bu_3Sn)_2$ in CH_2Cl_2 at room temperature, to give the stannylated (benzyloxy)glucal 9 (17%), a mixture of azines 11 (60%), the (benzyloxy)glucal 12 (3%), and traces of Bu_3SnCl . Neither the 1,1-distannane nor Sn-glycosides could be isolated. The analogous reaction in CCl_4 doubled the yield of 9 (36%). Large amounts of Bu_3SnCl and traces of $CHCl_3$ were also formed ($Bu_3SnCl/9$ ca. 5:1), besides 11 and small amounts of 12.

Apparently, the nucleophilic attack of the carbene at $(Bu_3Sn)_2$ is not followed by migration of a Bu_3Sn moiety to C(1), but by homolytic cleavage of the Sn-Sn bond in the intermediate A [30] [31] (Scheme 2). This generates Bu_3Sn^* and a second radical species B;

Scheme 2

$$\begin{bmatrix}
BnO & O^{+} & (Bu_{3}Sn)_{2} & BnO & O^{+} & Bu & BnO & O^{+} & Bu & BnO & O^{+} & Bu & BnO &$$

An electrophilic attack of the glycosylidene carbene on the Sn-H bond, as proposed for the interaction of dichlorocarbene [27] and an alkylidene carbene [28] with silanes, appears less likely for the nucleophilic to ambiphilic glycosylidene carbenes; there is no evidence for a free radical addition-dissociation-recombination sequence [19].

Bu₃Sn' reacts with CCl₄ to generate Bu₃SnCl, 'CCl₃, and ultimately CHCl₃; abstraction of H' from **B** leads to **9**.

3. Conformation of the Sn-Glycosides. The structure of the β -D-Sn-mannoside 8 was established by X-ray analysis (Table 2). Two conformers of 8 co-exist in the solid state at 85 K. The bond lengths correspond to standard values. The conformers differ in the orientation of the Bu moieties and in the conformation of the pyranose ring (slightly flattened 4C_1 in Conformer A, and 4C_1 in Conformer B, Fig. and Table 3).

In solution, the ${}^{3}J(H,H)$ constants J(2,3), J(3,4), and J(4,5) imply a ${}^{4}C_{1}$ conformation for the pyranose ring of the Sn-glycosides 3-8 (Table 5 in Exper. Part). However, the

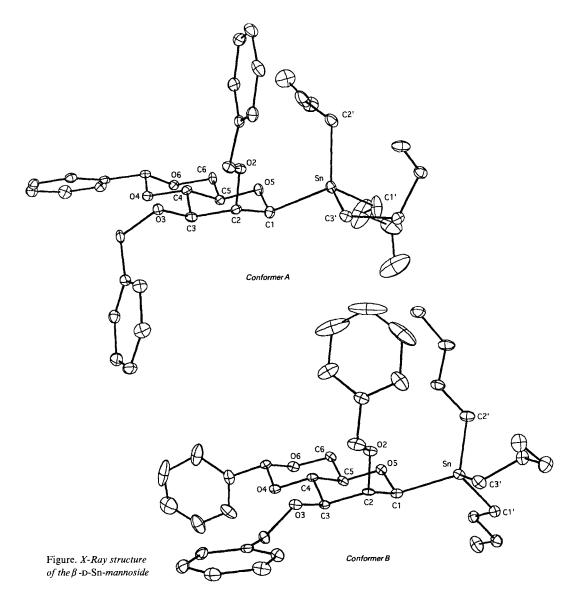


Table 2. Crystal Data and Experimental Conditions for the X-Ray Analysis of 8

Molecular formula	C ₃₉ H ₅₄ O ₅ Sn	Calc. density [g/cm ³]	1.30
Formula weight	721.6	Temp. of data collection [K]	85
Crystal size [mm]	$ca.\ 0.25 \times 0.3 \times 0.3$	Radiation	MoK_a
Crystal structure	monoclinic	λ [Å] (graphite monochrom.)	0.7107
Space group	P2(1)	Diffractometer	CAD4
a [Å]	19.846 (8)	Θ_{\max} [°]	26.0
b [Å]	9.058 (7)	No. of reflections measured	7663
c [Å]	20.447 (5)	Observed reflections $[I > 3\sigma(I)]$	6465
β [°]	90.97 (3)	R(F)	0.029
$V[\mathring{A}^3]$	3675 (3)	wR(F)	0.035
\mathbf{z}^{-}	4	$\mu (MoK_{\alpha}) [mm^{-1}]$	0.74

Table 3. Selected Atom Distances and Bond and Dihedral Angles of the X-Ray Structure of 8

Atom distances [Å]		Bond or dihedral angle	Bond or dihedral angles [°]						
Conformer 2	4								
Sn-C(1)	-C(1) 2.185 (5) Sn- $-C(1)$ -O(5)		106.0 (3)	Sn-C(1)-C(2)-O(2)	43.6				
Sn-C(1')	2.157 (6)	Sn-C(1)-C(2)	109.7 (3)	Sn-C(1)-O(5)-C(5)	175.3				
Sn-C(2')	2.164 (5)	C(1)-Sn- $C(1')$	107.9(2)	C(1)-C(2)-C(3)-C(4)	-50.4				
Sn-C(3')	2.160 (5)	C(1)-Sn- $C(2')$	113.4(2)	C(2)-C(3)-C(4)-C(5)	59.0				
C(1) - O(5)	1.445 (6)	C(1)-Sn-C(3')	105.1(2)	C(3)-C(4)-C(5)-C(6)	174.2				
C(1)-C(2)	1.531 (6)	C(1')-Sn- $C(2')$	110.9 (3)	C(3)-C(4)-C(5)-C(6)	-66.0				
C(2) - O(2)	1.441 (5)	C(1')-Sn-C(3')	108.8 (2)	C(4)-C(5)-O(5)-C(1)	62.9				
		C(2')-Sn-C(3')	110.4(2)	C(5)-O(5)-C(1)-C(2)	-54.9				
	•	Sn-C(1)-C(2)-C(3)	166.6	O(5)-C(1)-C(2)-C(3)	48.3				
Atom distances [Å]		Bond or dihedral angles [°]							
Conformer 1	В								
Sn-C(1)	2.161 (5)	Sn-C(1)-O(5)	107.0(3)	Sn-C(1)-C(2)-O(2)	55.0				
Sn-C(1')	2.166 (5)	Sn-C(1)-C(2)	113.3 (3)	Sn-C(1)-O(5)-C(5)	177.1				
Sn-C(2')	2.157 (6)	C(1)-Sn- $C(1')$	105.3 (2)	C(1)-C(2)-C(3)-C(4)	-57.6				
Sn-C(3')	2.157 (6)	C(1)-Sn-C(2')	111.4(2)	C(2)-C(3)-C(4)-C(5)	58.0				
C(1)-O(5)	1.443 (6)	C(1)-Sn-C(3')	110.4(2)	C(3)-C(4)-C(5)-C(6)	179.1				
C(1)-C(2)	1.521 (6)	C(1')-Sn-C(2')	107.3 (2)	C(3)-C(4)-C(5)-O(5)	-61.0				
C(2)-O(2)	1.431 (5)	C(1')-Sn- $C(3')$	110.4(2)	C(4)-C(5)-O(5)-C(1)	60.8				
		C(2')-Sn-C(3')	111.8 (2)	C(5)-O(5)-C(1)-C(2)	-58.8				
		Sn-C(1)-C(2)-C(3)	178.2	O(5)-C(1)-C(2)-C(3)	57.8				

Table 4. NMR Spectroscopic Data a) of α -D- and β -D-Gluco-, and α -D- and β -D-Mannopyranosylstannanes 3-8

Compound (Configura- tion)	^{1}J		2J		^{3}J			Chemical shifts [ppm]		
	C(1),H	Sn,C(1) b)	Sn,H~	C(1) Sn,C(2)	Sn, H-C(2)	Sn,C(3)	Sn,C(5)	δ(H-C(1))	δ(C(1))	δ(Sn) d)
3 (\alpha - D-gluco)	142.1	353	24.8	< 5	95.9	10.5	14.7	4.81	76.55	-35.4
$5(\alpha - D - gluco)$	145.7	462	26.2	< 10	121.2	14.4	14.8	5.41	79.61	-142.0
4 (β-D-gluco)	134.2	394	15.0	7.2	30.8	51.6	46.3	3.68	75.24	-33.1
6 (β -D-gluco)	142.2	517	19.0	10.0	37.5	68.9	58.3	4.20	77.38	-138.9
$7(\alpha - D-manno)$	142.2	296	37.2	49.6	_	< 2	10.7	4.88	76.06	-36.1
8 (β -D-manno)	135.0	395	23.0	13.3		39.1	46.0	3.71	79.08	-41.2

a) In C_6D_6 at 300 K (the nuclei involved are 1H , ^{13}C , and ^{119}Sn). b) Averaged values of the ^{119}Sn and ^{117}Sn coupling constants. c) With TMS as standard. d) With SnMe₄ as standard.

J(1,2) values differ markedly from the corresponding values of O-glycosides. This is either due to the presence of the electropositive Sn-substituent at C(1), or to a distortion of the chair conformation. To clarify this point, we calculated the J(1,2) values as a function of the dihedral angle H-C(1)-C(2)-H according to Haasnoot et al. [32] [33], and found 4.1 Hz (60°) for 3 and 5, 11.0 Hz (180°) for 4 and 6, 2.9 Hz (60°) for 7, and 1.3 Hz (60°) for 8. The values observed for the β -D-glucosides (4: 11.1 Hz, 6: 11.0 Hz) and the β -D-mannoside (8: 1.2 Hz) are in agreement with those calculated for the 4C_1 -conformation. The α -D-glucosides (3: 7.0 Hz, 5: 6.8 Hz) show larger and the α -D-mannoside (7: < 0.5 Hz) shows a smaller J(1,2) value than what was calculated, probably due to a slight deviation of SnR₃ from the axial position⁴).

The ${}^3J({}^{119}\mathrm{Sn}, {}^{13}\mathrm{C})$ values display a typical Karplus-type dependence on the dihedral angle [35] [36]. The large values of $J(\mathrm{Sn}, \mathrm{C}(3))$ and $J(\mathrm{Sn}, \mathrm{C}(5))$ in the β -D-anomers and the corresponding small values in the α -D-anomers confirm the configuration of the α -D- and β -D-Sn-glycosides, and their 4C_1 -conformation (Table 4). This interpretation is supported by the large ${}^3J(\mathrm{Sn},\mathrm{H}-\mathrm{C}(2))$ values for the α -D-anomers and the small ones for the β -D-anomers.

With this information, we investigated the NMR-spectroscopic evidence for an anomeric effect in Sn-glycosides. Typically, one expects ${}^{1}J(C,H)$ and $\delta(H-C(1))$ to be larger for the axial anomer [37]. A difference of ca. 10 Hz in the one-bond coupling constant (${}^{1}J(C(1),H)$) between pairs of anomers is usually observed [38–40]. Higher ${}^{1}J(C(1),H)$ values are found for glycosyl derivatives with more strongly electronegative C(1)-substituents (F, Cl); conversely, lower values are typical for more strongly electropositive substituents (NHPh) [39]. The electronegativity does not affect the difference of the coupling constants of ca. 10 Hz between the two anomers. Quantitatively, the same relations are found for the SnPh₃ and SnBu₃ glycosides, although the difference between the ${}^{1}J(C(1),H)$ values for the anomeric SnPh₃ glucosides 5 and 6 amounts to only 2.5% of the smaller coupling constant⁵) (5.9% for the SnBu₃ glucosides 3 and 4, and 5.3% for SnBu₃ mannosides 7 and 8; Table 4). The relatively small ${}^{1}J(C(1),H)$ values are a consequence of the electropositive Sn-substituent at C(1), in agreement with expectations.

The ${}^{1}J(Sn,C(1))$ constants follow the same rules, *i.e.*, α -D-glycosides display smaller coupling constants than β -D-glycosides. The differences between the ${}^{1}J(Sn,C)$ constants (11.6% for the SnBu₃ glucosides 3 and 4, 11.9% for the SnPh₃ glucosides 5 and 6, and 36.2% for the SnBu₃ mannosides 7 and 8) appear significant, when they are compared to the parameters of analogous cyclohexane derivatives which show very small differences between the ${}^{1}J(Sn,C)$ values for equatorial and axial Sn-substituents. In some cases, there are even differences of opposite sign [41]. In contrast to the one-bond coupling constants, the differences between the $\delta({}^{119}Sn)$ values for the α -D- and β -D-anomers are rather small and similar to the shift changes found in the cyclohexane analogs, where differences of opposite sign have again been found [41].

⁴) α -D-Isomers necessarily contain bulky axial substituents in a 4C_1 conformation. The tabulated A values for trialkyl- and triaryltin substituents range between 1.06 and 1.44 kcal/mol [34].

For the anomeric pentaacetylated glucopyranosides, the difference is 7.3% of the smaller coupling constant (177 vs. 165 Hz [39]).

We thank Mr. P. Seiler for determining the X-ray structure, Mr. Th. Plüss and Mrs. B. Brandenberg for their help with the NMR experiments, and the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for generous support.

Experimental Part

General. Solvents were freshly distilled. Reagents were from Fluka or Aldrich, and used as received. Powdered 4-Å molecular sieves (Union Carbide) were dried i.v. for 6 h at 280° and stored under Ar. Anal. TLC: Merck precoated silica gel $60 \ F$ -254 plates; detection by treatment with a soln. of 5% (NH₄)₆Mo₇O₂₆·4 H₂O and 0.1% Ce(SO₄)₂·4 H₂O. Flash chromatography (FC): silica gel Merck $60 \ (40-63 \ \mu m)$. M.p.: uncorrected. Optical rotations: in a 1-dm cell at 25° at 365, 436, 546, 578, and 589 nm; values at 589 nm obtained from a regression curve. IR Spectra: 2-3% CHCl₃ soln. ¹H- and ¹³C-NMR Spectra: at 300, 400, and 600 MHz (¹H) and at 50, 75, and 100 MHz (¹³C); chemical shifts δ are given in ppm relative to TMS. Coupling constants J are in Hz; in ambiguous cases, ¹H-NMR signals were assigned by selective homonuclear decoupling experiments; ¹³C-assignments by ¹H, ¹³C-HMQC (¹H 400 MHz).

¹¹⁹Sn-NMR Spectroscopy. Sn,C-Coupling constants are taken from the ¹H-decoupled ¹³C-NMR (100 MHz). For sensitivity reasons, only the chemical shifts and coupling constants of the most abundant isotope ¹¹⁹Sn were determined. The 119Sn{1H} spectra were obtained from refocused 1H, 119Sn-INEPT experiments [42]. The defocusing delay was optimised for an active coupling constant of 90 Hz, whereas the two refocusing delays were set to 1 ms. ¹¹⁹Sn, ¹H-Coupling constants were determined using the sequence $\pi/2(H)-1/[4J(Sn,H)]-\pi(H),\pi(Sn)-1/[4J(Sn,H)]$ $[4J(Sn,H)]-3 \mu s-\pi/2(Sn)-Acq.(H)$ with appropriate phase cycling of the tin pulses [43]. The ¹¹⁹Sn carrier frequency was set on resonance with the resonance frequency of the compounds. The delays were generally optimised for an active coupling of 90 Hz. The spectra obtained only display the ¹¹⁹Sn-satellite signals of the ¹H-NMR, the active coupling being in antiphase. Whereas the $\delta(H)$ evolution during the pulse sequence is refocused, homonuclear ¹H, ¹H couplings of similar size as the active coupling induce phase distortions in the *multiplets* of the H–C(1) response. Nevertheless, the Sn,H-coupling constants were extracted with no major effort. 119Sn, 13C-Coupling constants were obtained from the ¹³C{¹H} spectra. The ¹¹⁷Sn (natural abundance 7.6%) and the ¹¹⁹Sn (8.6%) satellites could only be resolved for one-bond coupling interactions. The tabulated long-range coupling constants, therefore, represent an average of the ¹¹⁷Sn, ¹³C and ¹¹⁹Sn, ¹³C constants. The ¹J constants of ¹¹⁷Sn correspond – within experimental error - to values calculated from ${}^{1}J({}^{119}\mathrm{Sn},{}^{13}\mathrm{C})$ constants and the ratio of the γ values $(\gamma^{(117}\text{Sn})/\bar{\gamma}^{(119}\text{Sn})\ 0.956:1\ [44])$. ¹³C, ¹H-Coupling constants and the assignments of the ¹³C-resonances were obtained from refocused, phase sensitive ¹H, ¹³C-HMQC experiments [45] which yielded spectra displaying the active coupling in the F_2 domain.

Reaction of Bu_3SnH with 1. Under Ar, solid 1 (110 mg, 0.2 mmol) was added to a mixture of Bu_3SnH (0.27 ml, 1 mmol) and 4-Å molecular sieves in CH_2Cl_2 (1 ml). The mixture was stirred for 16 h at 24° and filtered through Celite. The filtrate was concentrated, and filtered through a short column of SiO_2 (7 g). Excess Bu_3SnH was eluted with hexane. Further elution with hexane/ CH_2Cl_2 1:9 gave 153 mg (94%) of 3/4/9 (3/4 5.1:1). FC (pentane/ CH_2Cl_2 3:2) gave 95 mg (58%) of 3, 17 mg (10%) of 4, and 13 mg (8%) of 9.

Similarly, but in THF (1 ml) instead of CH_2Cl_2 , 136 mg (84%) of 3/4/9 (3/4 3.8:1) were obtained and separated: 88 mg (54%) of 3, 26 mg (16%) of 4, and 5 mg (3%) of 9.

Tributyl(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl) stannane (3). R_{Γ} (hexane/CH₂Cl₂ 1:9) 0.40. [α] $_{D}^{25}$ = +59.0 (c = 2.74, CHCl₃). IR: 3060w, 3000m, 2960s, 2920s, 2870s, 1495m, 1465m (sh), 1455s, 1420w, 1375m, 1360m, 1320w, 1290w, 1185w, 1145m, 1090s (br.), 1070s (sh), 1030s, 1000m (sh), 960w (sh), 910w, 865w, 700s, 660w. 1 H-NMR (400 MHz, C_{6} D₆; see also Table 5): 7.38–7.05 (m, 20 arom. H); 5.09 (d, J = 11.3, 1 H, PhC H_2); 5.02 (d, J = 11.3, 1 H, PhC H_2); 4.94 (d, J = 11.3, 1 H, PhC H_2); 4.81 (d, J = 7.0, J(Sn,H) = 24.8, H-C(1)); 4.66 (d, J = 11.3, 1 H, PhC H_2); 4.59 (d, J = 11.7, 1 H, PhC H_2); 4.49 (d, J = 11.0, 1 H, PhC H_2); 4.46 (d, J = 11.3, 1 H, PhC H_2); 4.59 (d, J = 11.7, 1 H, PhC H_2); 4.49 (d, J = 11.0, 1 H, PhC H_2); 3.83 (t, J = 8.8, H-C(3)); 3.79 (d, J = 3.5, 2 H-C(6)); 3.76 (t, J ≈ 8.9, H-C(4)); 3.48 (td, J = 3.3, 9.5, H-C(5)); 1.69–1.60 (tm, J(Sn,H) = 42.4, 6 H-C(2')); 1.43–1.34 (tm, 6 H-C(3')); 1.13–1.07 (tm, J(Sn,H) = 49.9, 6 H-C(1')); 0.95–0.91 (tm, tH-C(4')). t3C-NMR (100 MHz, tC₆D₆): 139.64 (t8); 139.40 (t8); 139.18 (t8); 138.92 (t8); 128.61–127.66 (t8); 86.86 (t9, t9, t9

	3	4	5	6	7	8
J(1,2)	7.0	11.1	6.8	11.0	< 0.5	1.2
J(2,3)	8.6	8.4	8.8	8.2	3.2	3.1
J(3,4)	8.8	9.3	8.6	9.1	8.6	9.8
J(4,5)	9.5	9.6	_	9.5	9.5	9.0
$J(5,6_{A})$	3.3	2.0	-	3.0	4.9	4.9
$J(5,6_B)$	3.3	3.8	-	3.0	10.0	10.3
$J(6_A,6_B)$	-	9.6	_	_	10.4	10.3

Table 5. Selected Coupling Constants [Hz] of the Stannanes 3-8

339 (23), 338 (10), 337 (15), 291 (31, $[SnBu_3]^+$), 290 (13), 289 (25), 288 (11), 287 (16), 235 (26, $[SnBu_2 + 1]^+$), 234 (11), 233 (22), 232 (10), 231 (16), 181 (41), 179 (52, $[SnBu + 2]^+$), 178 (22), 177 (49), 176 (22), 175 (36), 91 (100). Anal. calc. for $C_{46}H_{62}O_5Sn$ (813.68): C 67.90, H 7.68; found: C 67.71, H 7.76.

Tributyl(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)stannane (4). R_f (hexane/CH₂Cl₂ 9:1) 0.58. $[\alpha]_D^{25} = -2.8$ $(c = 1.95, CHCl_3)$. IR: 3060w, 3000m, 2960s, 2920s, 2870s, 1495m, 1465m (sh), 1455m, 1375m, 1360m, 1345m (sh), 1315w, 1280w (br.), 1170m (sh), 1120s, 1095s, 1065s (br.), 1030m, 1000m, 960w, 910s, 865w, 835w (br.), 700s, 670m, 650m. ¹H-NMR (400 MHz, C_6D_6): 7.37–7.05 (m, 20 arom. H); 5.20 (d, J = 11.5, 1 H, PhC H_2); 4.97 (d, J = 11.2, 11 H, $PhCH_2$); 4.89 (d, J = 11.3, 1 H, $PhCH_2$); 4.81 (d, J = 11.2, 1 H, $PhCH_2$); 4.68 (d, J = 11.5, 2 H, $PhCH_2$); 4.53 $(d, J = 12.3, 1 \text{ H}, \text{PhC}H_2)$; 4.45 $(d, J = 12.3, 1 \text{ H}, \text{PhC}H_2)$; 3.88 (dd, J = 8.4, 11.1, J(Sn, H) = 30.8, H - C(2); 3.82 $(t, J \approx 9.3, H-C(4)); 3.74-3.68 (m, H-C(3), 2 H-C(6)); 3.68 (d, J = 11.1, J(Sn, H) = 15.0, H-C(1)); 3.34 (ddd, J = 11$ J = 2.0, 3.8, 9.6, H-C(5); 1.71-1.58 (m, J(Sn,H) = 47.6, 6H-C(2')); 1.42-1.33 (m, 6H-C(3')); 1.17-1.01 (m, J(Sn,H) = 51.7, 6 H-C(1'); 0.94-0.91 (m, 9 H-C(4')). ¹³C-NMR (100 MHz, C₆D₆): 139.45 (s); 139.35 (2s); 139.29 (s); 128.76-127.41 (m); 89.93 (d, J(Sn,C) = 51.6, C(3)); 83.80 (d, J(Sn,C) = 46.3, C(5)); 81.98 (d, J(Sn,C) = 7.2, C(2); 79.59 (d, C(4)); 75.33 (t, PhCH₂); 75.24 (d, J(Sn,C) = 394, C(1)); 75.02 (t, PhCH₂); 74.39 (t, $PhCH_2$); 73.61 (t, $PhCH_2$); 69.85 (t, C(6)); 29.59 (3t, J(Sn,C) = 20.2, C(2')); 27.84 (3t, J(Sn,C) = 55.2, C(3')); 13.95 (3q, C(4')); 9.51 (3t, J(Sn,C) = 323, C(1')). ¹¹⁹Sn-NMR: -33.10. FAB-MS: 758 (14), 757 (30, $[M - Bu]^+$), 756 (18), 755 (24), 754 (13), 753 (13), 341 (15, [BnOSnBu₂]⁺), 340 (7), 339 (12), 338 (5), 337 (8), 291 (31, [SnBu₃]⁺), 290 (14), 289 (26), 288 (11), 287 (17), 235 (22, $[SnBu_2 + 1]^+$), 234 (10), 233 (20), 232 (9), 231 (15), 181 (38), 179 (44, $[SnBu + 2]^+$), 178 (19), 177 (42), 176 (19), 175 (30), 91 (100).

1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-(tributylstannyl)-D-arabino-hex-1-enitol (9). $R_{\rm f}$ (hexane/CH₂Cl₂ 1:9) 0.63. [α] $_{\rm D}^{125} = -8.2$ (c = 2.26, CHCl₃). IR: 3090w, 3070w, 3010m, 2960s, 2930s, 2880s, 2860s (sh), 1495w, 1465m (sh), 1455s, 1380m, 1365m, 1310w, 1285w, 1260m, 1185m (sh), 1120s (sh), 1100s, 1070s (sh), 1030s, 965m, 910m, 870w, 695s, 660m (sh). $^{\rm 1}$ H-NMR (400 MHz, CDCl₃): 7.34–7.25 (m, 20 arom. H); 4.87 (d, J = 11.4, 1 H, PhC H_2); 4.80 (d, J = 11.6, 1 H, PhC H_2); 4.71 (d, J = 11.6, 1 H, PhC H_2); 4.60 (d, $J \approx 5$, H–C(3)); 4.59 (s, 2 H, PhC H_2); 4.57 (d, $J \approx 13.1$, 1 H, PhC H_2); 4.55 (d, J = 11.3, 1 H, PhC H_2); 4.47 (d, J = 11.1, 1 H, PhC H_2); 4.08 (dd, J = 5.2, 7.6, H–C(4)); 3.99 (td, $J \approx 4.1$, 7.8, H–C(5)); 3.83 (dd, J = 4.7, 10.8, H_A–C(6)); 3.79 (dd, J = 3.7, 10.8, H_B–C(6)); 1.56–1.41 (m, 6 H–C(2')); 1.31–1.22 (m, 6 H–C(3')); 1.05–0.82 (m, 6 H–C(1'), 9 H–C(4')). 13 C-NMR (50 MHz, C₆D₆): 154.52 (s); 143.82 (s); 139.23 (s); 139.13 (2s); 138.67 (s); 129.30–125.66 (m); 77.31 (d); 74.89 (d); 73.62 (t); 73.58 (t); 73.31 (d); 72.55 (t); 69.33 (t); 69.16 (t); 29.56 (3t); 27.69 (3t); 13.98 (3q); 10.57 (3t). 119 Sn-NMR: -57.69.

Reaction of Ph₃SnH with 1. As described for 3/4/9, with Ph₃SnH (351 mg, 0.1 mmol) instead of Bu₃SnH (16 h at 27°). Evaporation of the CH₂Cl₂ or THF and FC (pentane/CH₂Cl₂ 1:4) gave 110 mg (63%) of 5 and 25 mg (14%) of 6, or 93 mg (53%) of 5 and 39 mg (22%) of 6, respectively.

Triphenyl(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)stannane (5). R_f (hexane/CH₂Cl₂ 1:9) 0.38. [α]_D²⁵ = +60.7 (c = 2.20, CHCl₃). IR: 3060m, 3040m, 3000m, 2920m, 2870m, 1498m, 1480m, 1455m, 1430m, 1360m, 1320m, 1290m, 1260m, 1185m, 1145m, 1090m, 1075m, 1030m, 995m, 910m, 865m, 700m, 655m. ¹H-NMR (400 MHz, C₆D₆): 7.84–7.70 (m, J(Sn,H) ≈ 46, 15 arom. H); 7.30–6.95 (m, 20 arom. H); 5.41 (d, J = 6.8, J(Sn,H) = 26.2, H–C(1)); 4.78 (d, J = 11.5, 1 H, PhCH₂); 4.70 (d, J = 11.4, 1 H, PhCH₂); 4.62 (d, J = 11.4, 1 H, PhCH₂); 4.55 (d, J = 11.5, 1 H, PhCH₂); 4.50 (d, J = 11.3, 1 H, PhCH₂); 4.41 (d, J = 12.1, 1 H, PhCH₂); 4.37 (d, J = 11.3, 1 H, PhCH₂); 4.36 (d, J = 12.0, 1 H, PhCH₂); 4.06 (dd, J = 6.8, 8.8, J(Sn,H) = 121.2, H–C(2)); 3.92 (t, J = 8.7, H–C(3)); 3.82–3.75 (m, H–C(4), H–C(5)); 3.69 (s, 2 H–C(6)). ¹³C-NMR (100 MHz, C₆D₆): 139.70 (3s, J(Sn,C) = 471); 139.01 (s); 138.72 (s); 138.44 (s); 137.74 (s); 137.40 (d6d7, J8, J9, 128.80–127.01 (m1); 85.29 (d7, J9, J9, 77.90 (d7, J9, 78.80 (d7, J9, 79.61 (d7, J9, 79.61 (d7, J9, 77.90 (d7, J9, 79.90 (d8, J9, 79.90 (d9, J9, 79.90 (

(t, PhCH₂); 74.05 (t, PhCH₂); 73.71 (t, PhCH₂); 73.07 (t, PhCH₂); 69.12 (t, C(6)). ¹¹⁹Sn-NMR: -142.00. FAB-MS: 798 (1.7), 797 (3.7, [M - Ph]⁺), 796 (2.2), 795 (3.1), 794 (1.5), 793 (1.6), 351 (60, [SnPh₃]⁺), 350 (31), 349 (50), 348 (25), 347 (33), 275 (23, [SnPh₂ + 1]⁺), 274 (11), 273 (20), 272 (9), 271 (13), 197 (19, [SnPh]⁺), 196 (7), 195 (15), 194 (6), 193 (9), 91 (100). Anal. calc. for $C_{52}H_{50}O_{5}Sn$ (873.67): C 71.49, H 5.77; found: C 71.20, H 5.74.

Triphenyl(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl)stamnane (6). $R_{\rm f}$ (hexane/CH₂Cl₂ 1:9) 0.50. [α]_D²⁵ = +1.3 (c = 2.38, CHCl₃). IR: 3060m, 3000m, 2900m, 2860m, 1495m, 1480w, 1455m, 1430m, 1395w, 1360m, 1315w, 1265w, 1170m (sh), 1120s, 1090s, 1075s, 1060s (sh), 1030m, 995m, 910w, 700s, 660w. ¹H-NMR (400 MHz, C₆D₆): 7.82–7.68 (m, J(Sn,H) ≈ 47, 15 arom. H); 7.31–6.99 (m, 20 arom. H); 4.98 (d, J = 11.1, 1 H, PhCH₂); 4.93 (d, J = 11.3, 1 H, PhCH₂); 4.83 (d, J = 11.3, 1 H, PhCH₂); 4.78 (d, J = 11.3, 1 H, PhCH₂); 4.62 (d, J = 11.3, 1 H, PhCH₂); 4.47 (d, J = 12.3, 1 H, PhCH₂); 4.40 (d, J = 12.3, 1 H, PhCH₂); 4.20 (d, J = 11.0, J(Sn,H) = 19.0, H−C(1)); 4.18 (d, J = 11.2, 1 H, PhCH₂); 4.06 (dd, J = 8.2, 11.0, J(Sn,H) = 37.5, H−C(2)); 3.78 (t, J ≈ 9.3, H−C(4)); 3.73–3.69 (m, H−C(3), 2 H−C(6)); 3.40 (td, J = 3.0, 9.5, H−C(5)). ¹³C-NMR (100 MHz, C₆D₆): 138.92 (3s, J(Sn,C) = 507, C(1')); 138.84 (s); 138.59 (s); 138.31 (s); 137.72 (6d, J(Sn,C) = 35.0, C(2')); 137.54 (s); 128.99–127.07 (m); 89.54 (d, J(Sn,C) = 68.9, C(3)); 83.49 (d, J(Sn,C) = 58.3, C(5)); 80.70 (d, J(Sn,C) = 10.0, C(2)); 79.03 (d, C(4)); 77.38 (d, J(Sn,C) = 517, C(1)); 75.06 (t, PhCH₂); 74.83 (t, PhCH₂); 73.90 (t, PhCH₂); 73.42 (t, PhCH₂); 69.40 (t, C(6)). ¹¹⁹Sn-NMR: −138.94 (Sb), 347 (31), 275 (12, [SnPh₂ + 1]⁺), 796 (7), 795 (11), 794 (6), 793 (6), 351 (56, [SnPh₃]⁺), 350 (31), 349 (47), 348 (25), 347 (31), 275 (12, [SnPh₂ + 1]⁺), 744 (6), 273 (12), 272 (6), 271 (8), 197 (22, [SnPh]⁺), 196 (8), 195 (17), 194 (7), 193 (12), 91 (100). Anal. calc. for C₅₂H₅₀O₅Sn (873.67): C 71.49, H 5.77; found: C 71.18, H 5.93.

Reaction of Bu_3SnH with 2. Under Ar, a mixture of 2 (46 mg, 0.1 mmol) and 4-Å molecular sieves in CH_2Cl_2 (1.5 ml) was treated at 0° with Bu_3SnH (0.13 ml, 0.5 mmol), allowed to reach 24°, and stirred for 16 h. The mixture was filtered through Celite and concentrated. Excess Bu_3SnH was cluted with pentane from a short column of SiO_2 (5 g). Further elution with pentane/AcOEt 4:1 gave 54 mg (74%) of 7/8/10 (7/8/10). FC (30 g of SiO_2 , 150 ml of pentane/CH₂Cl₂1:1, 100 ml of hexane/AcOEt 6:1) gave 18 mg (25%) of 7/8/10 mg (28%) of 8/8/10, and 5 mg (7/8/10/10) of 1/8/10/10.

Similarly, but in THF (1.5 ml) instead of CH_2Cl_2 , 52 mg (72%) of 7/8/10 (7/8 1:4.2) were obtained and separated: 9 mg (13%) of 7, and 31 mg (43%) of 8.

 $\begin{array}{l} Tributyl(2,3\text{-}di\text{-}O\text{-}benzyl\text{-}4,6\text{-}O\text{-}benzylidene} - \alpha\text{-}D\text{-}mannopyranosyl) stannane} \ (7). \ R_f \ (\text{hexane/CH}_2\text{Cl}_2 \ 1:9) \ 0.20. \\ [\alpha]_D^{25} = +54.2 \ (c = 0.95, \text{CHCl}_3). \ IR: \ 3067w, \ 3043w, \ 2959m, \ 2930s, \ 2872m, \ 1496w, \ 1454m, \ 1412w, \ 1378m, \ 1312w, \ 1290w, \ 1271w, \ 1139m, \ 1096s, \ 1028m, \ 962w, \ 913w, \ 864w, \ 645w, \ 594w. \ ^1\text{H}\text{-}NMR \ (400 \ \text{MHz}, \ C_6D_6): \ 7.66-7.08 \ (m, \ 15arom. \ H); \ 5.44 \ (s, \ \text{PhC}H); \ 4.93 \ (d, \ J = 12.7, \ 1\ \text{H}, \ \text{PhC}H_2); \ 4.88 \ (s, \ J(\text{Sn}, \text{H}) = 37.2, \ \text{H}\text{-}C(1)); \ 4.83 \ (d, \ J \approx 12.4, \ 2\ \text{H}, \ \text{PhC}H_2); \ 4.76 \ (d, \ J = 12.3, \ 1\ \text{H}, \ \text{PhC}H_2); \ 4.61 \ (t, \ J \approx 9.0, \ \text{H}\text{-}C(4)); \ 4.29 \ (dd, \ J = 4.9, \ 10.4, \ \ \text{H}_{eq}\text{-}C(6)); \ 3.96-3.92 \ (m, \ \text{H}\text{-}C(2), \ \text{H}\text{-}C(3)); \ 3.75 \ (t, \ J \approx 10.2, \ \ \text{H}_{ax}\text{-}C(6)); \ 3.42 \ (dt, \ J \approx 4.8, \ 9.5, \ \text{H}\text{--}C(5)); \ 1.51-1.38 \ (m, \ 6\ \text{H}\text{--}C(2)); \ 1.32-1.22 \ (m, \ 6\ \text{H}\text{--}C(3')); \ 0.91-0.80 \ (m, \ 6\ \text{H}\text{--}C(4')). \ ^{13}\text{C-NMR} \ (100 \ \text{MHz}, \ \ \text{C}_6D_6): \ 139.50 \ (s); \ 139.41 \ (s); \ 138.82 \ (s); \ 128.84-127.71 \ (m); \ 101.91 \ (d, \ \text{PhC}H); \ 80.41 \ (d, \ \text{C}(4)); \ 80.39 \ (d, \ J(\text{Sn}, \text{C}) = 49.6, \ \text{C}(2)); \ 78.42 \ (d, \ J(\text{Sn}, \text{C}) = 296, \ \text{C}(1)); \ 73.39 \ (d, \ J(\text{Sn}, \text{C}) = 10.7, \ \text{C}(5)); \ 13.90 \ (3q, \ \text{C}(4')); \ 10.20 \ (3t, \ J(\text{Sn}, \text{C}) = 296, \ \text{C}(1)); \ 73.39 \ (d, \ J(\text{Sn}, \text{C}) = 55.0, \ \text{C}(3'); \ 13.90 \ (3q, \ \text{C}(4')); \ 10.20 \ (3t, \ J(\text{Sn}, \text{C}) = 303, \ \text{C}(1')). \ ^{19}\text{Sn}\text{-}NMR: \ -36.07. \ \text{FAB-MS}: 665 \ (2.0, \ [M-Bu]^{+}), \ 664 \ (1.1), \ 663 \ (1.6), \ 662 \ (1.2), \ 661 \ (1.1), \ 341 \ (5.2, \ [\text{BnOSnBu}_2]^{+}), \ 340 \ (2.1), \ 339 \ (4.3), \ 338 \ (1.8), \ 337 \ (2.6), \ 291 \ (27, \ [\text{SnBu}_3]^{+}), \ 290 \ (10), \ 289 \ (21), \ 288 \ (8), \ 287 \ (12), \ 235 \ (17, \ [\text{SnBu}_3]^{+}), \ 234 \ (6), \ 233 \ (14), \ 232 \ (6), \ 231 \ (10), \ 181 \ (10), \ 179 \ (40, \ [\text{SnBu}_3]^{+})$

1,5-Anhydro-2,3-di-O-benzyl-4,6-O-benzylidene-1-(tributylstannyl)-D-arabino-hex-1-enitol (10). $R_{\rm f}$ (hexane/ CH₂Cl₂ 1:9) 0.67. [α] $_{\rm D}^{25} \approx 0$ (c=1.31, CHCl₃). IR: 3067w, 3042w, 2958m, 2924m, 2872m, 1497w, 1455m, 1376m, 1341w, 1278w, 1262w, 1154m, 1093s, 1056m, 1028m, 913w, 875w, 650w, 600w, 545w. ¹H-NMR (300 MHz, CDCl₃): 7.71-7.09 (m, 15 arom. H); 5.34 (s, PhCH); 5.02 (d, J=12.0, 1 H, PhC H_2); 4.93 (d, J=11.2, 1 H, PhC H_2); 4.82 (d, J=7.3, H-C(3)); 4.79 (d, $J\approx 11.9$, 1 H, PhC H_2); 4.46 (d, J=11.2, 1 H, PhC H_2); 4.33 (dd, J=5.1, 10.3, H_{eq}-C(6)); 4.19 (dd, J=7.3, 10.2, H-C(4)); 3.85 (dt, $J\approx 5.1$, 10.2, H-C(5)); 3.67 (t, $J\approx 10.3$, H_{ax}-C(6)); 1.82-1.57 (m, 6 H-C(2')); 1.50-1.37 (m, 6 H-C(3')); 1.30-1.07 (m, J(Sn,H) ≈ 52.8, 6 H-C(1')); 1.02-0.97 (m, 9 H-C(4')). ¹³C-NMR (75 MHz, CDCl₃): 154.90 (s); 143.18 (s); 138.29 (s); 137.35 (s); 137.12 (s); 128.72-125.83 (m); 100.72 (d); 79.32 (d); 72.88 (d, J(Sn,C) ≈ 19.8); 72.59 (t); 70.53 (t); 69.10 (d, J(Sn,C) = 19.2); 68.48 (t); 28.73 (3t, J(Sn,C) = 20.3); 26.89 (3t, J(Sn,C) ≈ 59.3); 13.43 (4g); 9.82 (3t, J(Sn,C) ≈ 353.6). FAB-MS: 663 (21, M - Bu]⁺), 662 (11), 661 (16), 660 (7), 659 (8), 291 (9), [SnBu₃]⁺), 290 (4), 289 (7), 288 (3), 287 (4), 235 (12, [SnBu₂ + 1]⁺), 234 (5), 233 (10), 232 (4), 231 (8), 181 (12), 179 (37, [SnBu + 2]⁺), 178 (12), 177 (36), 176 (13), 175 (24), 91 (100). Anal. calc. for C₃₉H₅₂O₅Sn (719.55): C 65.10, H 7.28; found: C 65.10, H 7.42.

Reaction of $(Bu_3Sn)_2$ with 1. Under Ar, solid 1 (40 mg, 0.07 mmol) was added to a mixture of $(Bu_3Sn)_2$ (210 mg, 0.36 mmol) and 4-Å molecular sieves in CH_2Cl_2 (0.35 ml). The mixture was stirred for 6 h at 24° and filtered through Celite. The filtrate was concentrated, and filtered through a short column of SiO_2 (7 g). Excess $(Bu_3Sn)_2$ was eluted with hexane. Further elution with hexane/ CH_2Cl_2 1:9 gave 10 mg (17%) of 9 and 24 mg of a mixture of 11/12 [26] ca. 15:1.

Similarly, in CCl₄ (0.35 ml) instead of CH₂Cl₂, 36% of 9 were obtained.

REFERENCES

- [1] A. Vasella, Pure Appl. Chem. 1993, 65, 731.
- [2] P. R. Muddasani, E. Bozó, B. Bernet, A. Vasella, Helv. Chim. Acta 1994, 77, 257.
- [3] P. R. Muddasani, B. Bernet, A. Vasella, Helv. Chim. Acta 1994, 77, 334.
- [4] E. Bozó, A. Vasella, Helv. Chim. Acta 1994, 77, 745.
- [5] P. Uhlmann, A. Vasella, Helv. Chim. Acta 1994, 77, 1175.
- [6] A. Vasella, G. Baudin, L. Panza, J. Heteroatom Chem. 1991, 2, 151.
- [7] E. S. Petrov, M. I. Terekhova, R. G. Mirskov, M. G. Voronkov, A. I. Shatenshtein, Dokl. Akad. Nauk SSSR 1975, 221, 111.
- [8] E. Nakamura, K. Tanaka, S. Aoki, J. Am. Chem. Soc. 1992, 114, 9715.
- [9] P. Lesimple, J.-M. Beau, P. Sinay, J. Chem. Soc., Chem. Commun. 1985, 894.
- [10] S. Hanessian, M. Martin, R. C. Desai, J. Chem. Soc., Chem. Commun. 1986, 926.
- [11] P. Lesimple, J.-M. Beau, P. Sinaÿ, Carbohydr. Res. 1987, 171, 289.
- [12] E. Dubois, J.-M. Beau, Tetrahedron Lett. 1990, 31, 5165.
- [13] E. Dubois, J.-M. Beau, J. Chem. Soc., Chem. Commun. 1990, 1191.
- [14] R. W. Friesen, C. F. Sturino, A. K. Daljeet, A. Kolaczewska, J. Org. Chem. 1991, 56, 1944.
- [15] E. Dubois, J.-M. Beau, Carbohydr. Res. 1992, 228, 103.
- [16] H. Zhang, M. Brakta, G.D. Daves, Tetrahedron Lett. 1993, 34, 1571.
- [17] O. Frey, M. Hoffmann, V. Wittmann, H. Kessler, P. Uhlmann, A. Vasella, Helv. Chim. Acta, in preparation.
- [18] A. Lopusinski, B. Bernet, A. Vasella, Helv. Chim. Acta 1993, 76, 94.
- [19] J. A. Connor, J. P. Day, R. M. Turner, J. Chem. Soc., Chem. Commun. 1973, 578.
- [20] J. A. Connor, P.D. Rose, R. M. Turner, J. Organomet. Chem. 1973, 55, 111.
- [21] J.A. Connor, J.P. Day, R.M. Turner, J. Chem. Soc., Dalton Trans. 1976, 283.
- [22] A. Padwa, D. Eastman, J. Org. Chem. 1969, 34, 2728.
- [23] M. P. Doyle, J. Taunton, S. Oon, M. T. H. Liu, N. Soundararajan, M. S. Platz, J. E. Jackson, Tetrahedron Lett. 1988, 29, 5863.
- [24] J. E. Jackson, N. Soundararajan, M. S. Platz, Tetrahedron Lett. 1989, 30, 1335.
- [25] K. Briner, A. Vasella, Helv. Chim. Acta 1989, 72, 1371.
- [26] A. Vasella, C. Witzig, C. Waldraff, P. Uhlmann, K. Briner, B. Bernet, L. Panza, R. Husi, Helv. Chim. Acta 1993, 76, 2847.
- [27] D. Seyferth, R. Damrauer, J. Y. Mui, T. F. Jula, J. Am. Chem. Soc. 1968, 90, 2944.
- [28] J. C. Gilbert, D. H. Giamalva, J. Org. Chem. 1985, 50, 2586.
- [29] R. Meuwly, A. Vasella, Helv. Chim. Acta 1986, 69, 25.

- [30] A. R. Rossi, R. Hoffmann, Inorg. Chem. 1975, 14, 365.
- [31] R. Hoffmann, J. M. Howell, E. L. Muetteries, J. Am. Chem. Soc. 1972, 94, 3047.
- [32] C. A. G. Haasnoot, F. A. A. M. D. Leeuw, C. Altona, Tetrahedron 1980, 36, 2783.
- [33] C.A.G. Haasnoot, F.A.A.M.D. Leeuw, C. Altona, Bull. Soc. Chim. Belg. 1980, 89, 125.
- [34] W. Kitching, H. A. Olszowy, K. Harvey, J. Org. Chem. 1982, 47, 1893.
- [35] H.G. Kuivila, J.L. Considine, R.J. Mynott, R.H. Sarma, J. Organomet. Chem. 1973, 55, C11.
- [36] D. Doddrell, I. Burfitt, W. Kitching, M. Bullpitt, C. Lee, R.J. Mynott, J.L. Considine, H.G. Kuivila, R.H. Sarma, J. Am. Chem. Soc. 1974, 96, 1640.
- [37] E. Juaristi, G. Cuevas, Tetrahedron 1992, 48, 5019.
- [38] K. Bock, I. Lundt, C. Pedersen, Tetrahedron Lett. 1973, 13, 1037.
- [39] K. Bock, C. Pedersen, J. Chem. Soc., Perkin Trans. 2 1974, 293.
- [40] K. Bock, C. Pedersen, Carbohydr. Res. 1979, 71, 319.
- [41] H. A. Olszowy, W. Kitching, Organometallics 1984, 3, 1670.
- [42] D.P. Burum, R.R. Ernst, J. Magn. Reson. 1980, 39, 163.
- [43] G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 1980, 69, 185.
- [44] J. Mason, 'Multinuclear NMR', Plenum, New York, 1987.
- [45] A. Bax, S. Subramanian, J. Magn. Reson. 1988, 76, 569.